Glass transitions and scaling laws within an alternative mode-coupling theory
نویسندگان
چکیده
منابع مشابه
Colloidal glass transition: beyond mode-coupling theory.
A new theory for the dynamics of concentrated colloidal suspensions and the colloidal glass transition is proposed. The starting point is the memory function representation of the density correlation function. The memory function can be expressed in terms of a time-dependent pair-density correlation function. An exact, formal equation of motion for this function is derived and a factorization a...
متن کاملAsymptotic scaling laws in a schematic model of mode coupling theory
to the glass transition in dense colloidal dispersions using asymptotic expansions in the schematic F (γ̇) 12 model of mode coupling theory. The shear thinning of the viscosity in fluid states and the yielding of glassy states is discussed. At the transition between fluid and shear-molten glass, simple and generalized Herschel-Bulkley laws are derived with power law exponents that can be compute...
متن کاملMode-coupling approximations, glass theory and disordered systems
We discuss the general link between mode-coupling like equations (which serve as the basis of some recent theories of supercooled liquids) and the dynamical equations governing mean-field spin-glass models, or the dynamics of a particle in a random potential. The physical consequences of this interrelation are underlined. It suggests to extend the mode-coupling approximation to temperatures wel...
متن کاملMode-coupling as a Landau theory of the glass transition
We derive the Mode Coupling Theory (MCT) of the glass transition as a Landau theory, formulated as an expansion of the exact dynamical equations in the difference between the correlation function and its plateau value. This sheds light on the universality of MCT predictions. While our expansion generates higher order non-local corrections that modify the standard MCT equations, we find that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2015
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.91.042117